skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xiaoping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 6, 2025
  2. Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor Cu1−xMn1+ySiTe3(0.04 ≤x≤ 0.26; 0.03 ≤y≤ 0.15), which crystallizes in a polar monoclinic structure (Pmspace group). It exhibits a canted antiferromagnetic state below 35 kelvin, with magnetic hysteresis and remanent magnetization under 15 kelvin. We demonstrate multiferroicity and strong magnetoelectric coupling through magnetodielectric and magnetocurrent measurements. At 10 kelvin, the magnetically induced electric polarization reaches ~0.8 microcoulombs per square centimeter, comparable to the highest value in oxide multiferroics. We also observe possible room-temperature ferroelectricity. Given that multiferroicity is very rare among transition metal chalcogenides, our finding sets up a unique materials platform for designing multiferroic chalcogenides. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  3. Abstract Spin and lattice are two fundamental degrees of freedom in a solid, and their fluctuations about the equilibrium values in a magnetic ordered crystalline lattice form quasiparticles termed magnons (spin waves) and phonons (lattice waves), respectively. In most materials with strong spin-lattice coupling (SLC), the interaction of spin and lattice induces energy gaps in the spin wave dispersion at the nominal intersections of magnon and phonon modes. Here we use neutron scattering to show that in the two-dimensional (2D) van der Waals honeycomb lattice ferromagnetic CrGeTe 3 , spin waves propagating within the 2D plane exhibit an anomalous dispersion, damping, and breakdown of quasiparticle conservation, while magnons along the c axis behave as expected for a local moment ferromagnet. These results indicate the presence of dynamical SLC arising from the zero-temperature quantum fluctuations in CrGeTe 3 , suggesting that the observed in-plane spin waves are mixed spin and lattice quasiparticles fundamentally different from pure magnons and phonons. 
    more » « less